RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2016

THIRD YEAR [BATCH 2014-17]

MATHEMATICS [Honours]

Date : 22/12/2016 : 11 am – 3 pm Time

Paper : VI

Full Marks: 100

[6×5]

[Use a separate Answer Book for each Group]

<u>Group – A</u>

Unit - I

(Answer any six questions)

1.	Explain the term 'Noise Level' in a difference table. Prove that Lagrange's interpolation polynomial over a given set of data is unique.	[2+3]
2.	Obtain Newton's forward interpolation polynomial (without error term) for the equi-distant nodes $x_0, x_1,, x_n$. When the formula may be used?	[4+1]
3.	Obtain numerical differentiation formula based on Lagrange's interpolation formula at an interpolating point and also at a non-interpolating point.	[3+2]
4.	Obtain the Composite form of Simpson's $\frac{1}{3}$ rd rule. Prove that Simpson's $\frac{1}{3}$ rd rule gives exact result	
	if applied to any polynomial of degree 3.	[3+2]
5.	Describe Gauss-Siedel Iterative method for solving a system of linear equations, mentioning stopping criterion. Also state the condition of convergence.	[4+1]
6.	Discuss Bisection method to find a simple root of the equation $f(x) = 0$. Why this method is always convergent?	[4+1]
7.	Discuss fixed point iteration for finding a simple root of $f(x) = 0$ stating the condition of convergence.	[4+1]
8.	Describe the power method to calculate numerically largest eigen value of a real symmetric matrix of order n.	[5]
9.	Solve by Euler's method the following differential equation for $x = 1$ by taking $h = 0.2$:	
	$\frac{dy}{dx} = xy$, $y = 1$ when $x = 0$. [Obtain the result correct to four decimal places]	[5]
<u>Unit - II</u>		
(Answer any four questions) [4×5]		

(Answer <u>any four</u> questions)

10. A particle moves along the curve : $x = t^{3} + 1$, $y = t^{2}$, z = 2t + 5.

Obtain the components of its velocity and acceleration at t=1 in the direction of $\,\hat{i}+\hat{j}+3\hat{k}$. [5]

11. Find the constants p, q such that the surfaces : $px^2 - qyz = (p+2)x \& 4x^2y + z^3 = 4$ cut orthogonally at the point (1, -1, 2). [5]

12. If \vec{a} is a constant vector, then prove that (i) Curl $(\vec{a}.\vec{r})\vec{a}=\vec{0}$, (ii) Curl $\left(\frac{\vec{a}\times\vec{r}}{r^3}\right)=-\frac{\vec{a}}{r^3}+\frac{3\vec{r}}{r^5}(\vec{a}\cdot\vec{r})$, where $r = |\vec{r}|$. [5]

- 13. Define circulation of a continuous vector field \vec{F} around a closed curve C in a region R. Hence state the condition for \vec{F} to be irrotational. Use Stoke's theorem to show that $\vec{F} = y^2 \hat{i} + x^2 \hat{j} - (x+z)\hat{k}$ is irrotational in the triangular region (0, 0, 0), (1, 0, 0), (0, 1, 0). [1+1+3]
- 14. Verify Green's theorem in the plane for $\oint_C \{(xy + y^2)dx + x^2dy\}$ where C is the closed curve of the region bounded by y = x and $y = x^2$ [5]
- 15. Use divergence theorem to evaluate $\iint \vec{F} \cdot \hat{n} \, dS$, where $\vec{F} = 3xz\hat{i} + y^2\hat{j} 3xz\hat{k}$ and S is the surface of the cube bounded by the planes x = 0, y = 0, z = 0, x = 1, y = 1, z = 1. [5]

Group – B

<u>Unit - III</u>

(Answer any three questions)

- Obtain the conditions for a given straight line to be a principal axis of a material system at 16. a) some point of its length. If so, find the other two principal axes.
 - b) If a rigid body swing under gravity about a fixed horizontal axis, show that the time of complete oscillation is $2\pi \sqrt{\frac{k^2}{gh}}$, where k is the radius of gyration about the fixed axis and h is the distance between the fixed axis and the centre of inertia of the body.

Three uniform rods AB, BC, CD are hinged freely at their ends, B and C, so as to form three 17. a) sides of a square and are laid on a smooth horizontal table. The rod AB is struck at its end A by a horizontal blow P which is perpendicular to its length. Show that the initial velocity of A

is 19 times that of D, and that the impulsive actions at B and C are $\frac{5}{12}P$ and $\frac{1}{12}P$

respectively.

A uniform rod of length 2a, is with one end in contact with a smooth horizontal table and is b) then allowed to fall. If α be its initial inclination to the vertical, show that its angular velocity

when it is inclined at an angle
$$\theta$$
 is $\left\{\frac{6g}{a} \cdot \frac{\cos \alpha - \cos \theta}{1 + 3\sin^2 \theta}\right\}^{\overline{2}}$. [3]

- 18. a) A uniform solid cylinder is placed with its axis horizontal on a plane whose inclination to the horizon is α . Show that the least coefficient of friction between it and the plane for pure rolling is $\frac{1}{2} \tan \alpha$.
 - b) State and prove the Principle of Conservation of energy.
- A circular homogeneous plate is projected up a rough inclined plane with velocity V without 19. a) rotation, the plane of the plate being in the plane of greatest slope. Show that the plate stops sliding after a time $\frac{V}{g(3\mu\cos\alpha+\sin\alpha)}$, where μ is the coefficient of friction and α is the inclination of the inclined plane.
 - A thin rod of length 2a revolves with uniform angular velocity ω about a vertical axis through b) a small joint at one extremity of the rod, so that it describes a cone of semi-vertical angle α . Show that $\omega^2 = \frac{3g}{4a\cos\alpha}$. [5]
- Show that the angular momentum of a rigid body moving in two dimensions about the origin 20. a) is $Mvp + Mk^2\dot{\theta}$, where the notations have their usual significance.

[4]

[7]

[6]

[3×10]

[6]

[4]

[5]

[5]

b) An elliptic lamina of eccentricity e is rotating with angular velocity ω about one latus rectum; suddenly this latus rectum is set free and the other is fixed. Show that the new angular

velocity is $\omega \frac{(1-4e^2)}{(1+4e^2)}$.

<u>Unit – IV</u>

(Answer <u>any two</u> questions) [2×10]

[5]

[5]

[5]

[4]

[5]

[5]

21. a) A comet is moving in a parabolic orbit about the Sun as focus; when at one end of the latus rectum its velocity suddenly becomes altered in the ratio n : 1, where n < 1; show that the comet will describe an ellipse whose eccentricity is $\sqrt{1-2n^2+2n^4}$.

- b) The volume of a spherical raindrop falling freely increases at each instant by an amount equal to λ times its surface area at that instant. If the initial radius of the raindrop be a, find the velocity at the end of time t and the distance fallen through in that time.
- 22. a) A planet of mass M and periodic time T, when at its greatest distance from the Sun comes into collision with a meteor of mass m, moving in the same orbit in the opposite direction with

velocity *v*; if
$$\frac{m}{M}$$
 be small, show that the major axis of the planet's path is reduced by
 $4\frac{m}{M}\cdot\frac{vT}{\pi}\sqrt{\frac{1-e}{1+e}}$. [6]

b) Establish the formula $F(t) = m(t)\frac{dv}{dt} + \lambda V$ for the motion of a particle of varying mass m(t) with velocity v under a force F(t), matter being emitted at a constant rate λ with velocity V relative to the particle.

- 23. a) A particle is projected along the inner surface of a rough sphere and is acted on by no forces. Show that it will return to the point of projection at the end of time $\frac{a}{\mu V} (e^{2\pi\mu} - 1)$, where *a* is the radius of the sphere, *V* is the velocity of projection and μ is the coefficient of friction.
 - b) A particle describes an ellipse of eccentricity e about a centre of force at a focus. When the particle is at one end of a minor axis, its velocity is doubled. Prove that the new path is a hyperbola of eccentricity $\sqrt{9-8e^2}$.

_____ X _____